Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Proteome Res ; 20(3): 1457-1463, 2021 03 05.
Article in English | MEDLINE | ID: covidwho-1093313

ABSTRACT

Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering key questions in vaccine design. For example, the binding affinity between different ACE2 receptors and SARS-COV-2 spike protein cannot be fully explained by amino acid similarity at ACE2 contact sites because protein structure similarities are not fully reflected by amino acid sequence similarities. To comprehensively compare protein homology, secondary structure (SS) analysis is required. While protein structure is slow and difficult to obtain, SS predictions can be made rapidly, and a well-predicted SS structure may serve as a viable proxy to gain biological insight. Here we review algorithms and information used in predicting protein SS to highlight its potential application in pandemics research. We also showed examples of how SS predictions can be used to compare ACE2 proteins and to evaluate the zoonotic origins of viruses. As computational tools are much faster than wet-lab experiments, these applications can be important for research especially in times when quickly obtained biological insights can help in speeding up response to pandemics.


Subject(s)
COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Algorithms , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Genome, Viral , Host Microbial Interactions/genetics , Humans , Models, Molecular , Pandemics , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Proteomics/statistics & numerical data , Receptors, Virus/chemistry , Receptors, Virus/genetics , SARS-CoV-2/pathogenicity , Sequence Alignment
2.
J Proteome Res ; 20(3): 1464-1475, 2021 03 05.
Article in English | MEDLINE | ID: covidwho-1091530

ABSTRACT

The SARS-CoV-2 virus is the causative agent of the 2020 pandemic leading to the COVID-19 respiratory disease. With many scientific and humanitarian efforts ongoing to develop diagnostic tests, vaccines, and treatments for COVID-19, and to prevent the spread of SARS-CoV-2, mass spectrometry research, including proteomics, is playing a role in determining the biology of this viral infection. Proteomics studies are starting to lead to an understanding of the roles of viral and host proteins during SARS-CoV-2 infection, their protein-protein interactions, and post-translational modifications. This is beginning to provide insights into potential therapeutic targets or diagnostic strategies that can be used to reduce the long-term burden of the pandemic. However, the extraordinary situation caused by the global pandemic is also highlighting the need to improve mass spectrometry data and workflow sharing. We therefore describe freely available data and computational resources that can facilitate and assist the mass spectrometry-based analysis of SARS-CoV-2. We exemplify this by reanalyzing a virus-host interactome data set to detect protein-protein interactions and identify host proteins that could potentially be used as targets for drug repurposing.


Subject(s)
COVID-19/virology , Information Dissemination/methods , Mass Spectrometry/methods , SARS-CoV-2/chemistry , COVID-19/epidemiology , COVID-19 Testing/methods , COVID-19 Testing/statistics & numerical data , Computational Biology , Databases, Protein/statistics & numerical data , Drug Repositioning , Host Microbial Interactions/physiology , Humans , Mass Spectrometry/statistics & numerical data , Pandemics , Protein Interaction Domains and Motifs , Protein Interaction Maps , Protein Processing, Post-Translational , Proteomics/methods , Proteomics/statistics & numerical data , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Viral Proteins/chemistry , Viral Proteins/physiology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL